8 resultados para State feedback controllers

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unmitigated transmission of undesirable vibration can result in problems by way of causing human discomfort, machinery and equipment failure, and affecting the quality of a manufacturing process. When identifiable transmission paths are discernible, vibrations from the source can be isolated from the rest of the system and this prevents or minimises the problems. The approach proposed here for vibration isolation is active force cancellation at points close to the vibration source. It uses force feedback for multiple-input and multiple-output control at the mounting locations. This is particularly attractive for rigid mounting of machine on relative flexible base where machine alignment and motions are to be restricted. The force transfer function matrix is used as a disturbance rejection performance specification for the design of MIMO controllers. For machine soft-mounted via flexible isolators, a model for this matrix has been derived. Under certain conditions, a simple multiplicative uncertainty model is obtained that shows the amount of perturbation a flexible base has on the machine-isolator-rigid base transmissibility matrix. Such a model is very suitable for use with robust control design paradigm. A different model is derived for the machine on hard-mounts without the flexible isolators. With this model, the level of force transmitted from a machine to a final mounting structure using the measurements for the machine running on another mounting structure can be determined. The two mounting structures have dissimilar dynamic characteristics. Experiments have verified the usefulness of the expression. The model compares well with other methods in the literature. The disadvantage lies with the large amount of data that has to be collected. Active force cancellation is demonstrated on an experimental rig using an AC industrial motor hard-mounted onto a relative flexible structure. The force transfer function matrix, determined from measurements, is used to design H and Static Output Feedback controllers. Both types of controllers are stable and robust to modelling errors within the identified frequency range. They reduce the RMS of transmitted force by between 30?80% at all mounting locations for machine running at 1340 rpm. At the rated speed of 1440 rpm only the static gain controller is able to provide 30?55% reduction at all locations. The H controllers on the other hand could only give a small reduction at one mount location. This is due in part to the deficient of the model used in the design. Higher frequency dynamics has been ignored in the model. This can be resolved by the use of a higher order model that can result in a high order controller. A low order static gain controller, with some tuning, performs better. But it lacks the analytical framework for analysis and design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, the polarization properties of a random fiber laser operating via Raman gain and random distributed feedback owing to Rayleigh scattering are investigated for the first time. Using polarized pump, the partially polarized generation is obtained with a generation spectrum exhibiting discrete narrow spectral features contrary to the smooth spectrum observed for the depolarized pump. The threshold, output power, degree of polarization and the state of polarization (SOP) of the lasing can be significantly influenced by the SOP of the pump. Fine narrow spectral components are also sensitive to the SOP of the pump wave. Furthermore, we found that random lasing's longitudinal power distributions are different in the case of polarized and depolarized pumping that results in considerable reduction of the generation slope efficiency for the polarized radiation. Our results indicate that polarization effects play an important role on the performance of the random fiber laser. This work improves the understanding of the physics of random lasing in fibers and makes a step forward towards the establishment of the vector model of random fiber lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms is considered. In particular, multiple oscillatory solutions and their properties are studied. We present novel results regarding the disappearance of limit cycle solutions, derive analytical criteria for frequency degeneration, amplitude degeneration, frequency extrema. Furthermore, we discuss the influence of the phase shift parameter and show analytically that the stabilization of the steady state and the decay of all oscillations (amplitude death) cannot happen for global feedback only. Finally, we explain the onset of traveling wave patterns close to the regime of amplitude death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical solitons are important in the modern photonics. Passively mode locked erbium doped fiber lasers provide a neat platform to study soliton dynamics. Soliton interaction dynamics is important for various applications and has quite different manifestations, including e.g. such as bound state solitons [1], soliton rains [2]. Soliton interactions have been observed with different mode locking approaches such as figure-of-eight [3] and nonlinear polarization rotation [4]. Carbon nanotubes (CNT) have recently been widely applied as an efficient saturable absorber for passively mode locked fiber lasers. We have recently studied the polarization dynamics in a CNT mode locked vector soliton erbium doped fiber laser [5]. So far, the polarization dynamics of bound state solitons have yet to be investigated. In this report, we present a wide range of polarization dynamics of bound state solitons generated in a CNT mode locked erbium doped fiber laser. The fiber laser consists of ∼ 2 m highly doped erbium fiber (Liekki Er80-8/125) as the gain medium, an optical isolator to ensure unidirectional oscillation anda 980 nm laser diode is used to pump the gain through the 1550/980 nm wavelength division multiplexer. A fused 10:90 coupler is used to couple 10 % of the light out of the laser cavity and two in-line polarization controllers (NewPort) are used to control the birefringence of the cavity and polarization of the pump light respectively. The total cavity length is ∼ 7.8 m indicating a 25.7 MHz fundamental repetition rate. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feedback is considered one of the most effective mechanisms to aid learning and achievement (Hattie and Timperley, 2007). However, in past UK National Student Surveys, perceptions of academic feedback have been consistently rated lower by final year undergraduate students than other aspects of the student experience (Williams and Kane, 2009). For pharmacy students in particular, Hall and colleagues recently reported that almost a third of students surveyed were dissatisfied with feedback and perceived feedback practice to be inconsistent (Hall et al, 2012). Aims of the Workshop: This workshop has been designed to explore current academic feedback practices in pharmacy education across a variety of settings and cultures as well as to create a toolkit for pharmacy academics to guide their approach to feedback. Learning Objectives: 1. Discuss and characterise academic feedback practices provided by pharmacy academics to pharmacy students in a variety of settings and cultures. 2. Develop academic feedback strategies for a variety of scenarios. 3. Evaluate and categorise feedback strategies with use of a feedback matrix. Description of Workshop Activities: Introduction to workshop and feedback on pre-reading exercise (5 minutes). Activity 1: A short presentation on theoretical models of academic feedback. Evidence of feedback in pharmacy education (10 minutes). Activity 2: Discussion of feedback approaches in participants’ organisations for differing educational modalities. Consideration of the following factors will be undertaken: experiential v. theoretical education, formative v. summative assessment, form of assessment and the effect of culture (20 minutes, large group discussion). Activity 3: Introduction of a feedback matrix (5 minutes). Activity 4: Development of an academic feedback toolkit for pharmacy education. Participants will be divided into 4 groups and will discuss how to provide effective feedback for 2 scenarios. Feedback strategies will be categorised with the feedback matrix. Results will be presented back to the workshop group (20 minutes, small group discussion, 20 minutes, large group presentation). Summary (10 minutes). Additional Information: Pre-reading: Participants will be provided with a list of definitions for academic feedback and will be asked to rank the definitions in order of perceived relevance to pharmacy education. References Archer, J. C. (2010). State of the science in health professional education: effective feedback. Medical education, 44(1), 101-108. Hall, M., Hanna, L. A., & Quinn, S. (2012). Pharmacy Students’ Views of Faculty Feedback on Academic Performance. American journal of pharmaceutical education, 76(1). Hattie, J., & Timperley, H. (2007). The power of feedback. Review of educational research, 77(1), 81-112. Medina, M. S. (2007). Providing feedback to enhance pharmacy students’ performance. American Journal of Health-System Pharmacy, 64(24), 2542-2545.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much has been written in the educational psychology literature about effective feedback and how to deliver it. However, it is equally important to understand how learners actively receive, engage with, and implement feedback. This article reports a systematic review of the research evidence pertaining to this issue. Through an analysis of 195 outputs published between 1985 and early 2014, we identified various factors that have been proposed to influence the likelihood of feedback being used. Furthermore, we identified diverse interventions with the common aim of supporting and promoting learners' agentic engagement with feedback processes. We outline the various components used in these interventions, and the reports of their successes and limitations. Moreover we propose a novel taxonomy of four recipience processes targeted by these interventions. This review and taxonomy provide a theoretical basis for conceptualizing learners' responsibility within feedback dialogues and for guiding the strategic design and evaluation of interventions. Receiving feedback on one's skills and understanding is an invaluable part of the learning process, benefiting learners far more than does simply receiving praise or punishment (Black & Wiliam, 1998 Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5, 7–74. doi:10.1080/0969595980050102[Taylor & Francis Online]; Hattie & Timperley, 2007 Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77, 81–112. doi:10.3102/003465430298487[CrossRef], [Web of Science ®]). Inevitably, the benefits of receiving feedback are not uniform across all circumstances, and so it is imperative to understand how these gains can be maximized. There is increasing consensus that a critical determinant of feedback effectiveness is the quality of learners' engagement with, and use of, the feedback they receive. However, studies investigating this engagement are underrepresented in academic research (Bounds et al., 2013 Bounds, R., Bush, C., Aghera, A., Rodriguez, N., Stansfield, R. B., & Santeen, S. A. (2013). Emergency medicine residents' self-assessments play a critical role when receiving feedback. Academic Emergency Medicine, 20, 1055–1061. doi:10.1111/acem.12231[CrossRef], [PubMed], [Web of Science ®]), which leaves a “blind spot” in our understanding (Burke, 2009 Burke, D. (2009). Strategies for using feedback students bring to higher education. Assessment & Evaluation in Higher Education, 34, 41–50. doi:10.1080/02602930801895711[Taylor & Francis Online], [Web of Science ®]). With this blind spot in mind, the present work sets out to systematically map the research literature concerning learners' proactive recipience of feedback. We use the term “proactive recipience” here to connote a state or activity of engaging actively with feedback processes, thus emphasizing the fundamental contribution and responsibility of the learner (Winstone, Nash, Rowntree, & Parker, in press Winstone, N. E., Nash, R. A., Rowntree, J., & Parker, M. (in press). ‘It'd be useful, but I wouldn't use it’: Barriers to university students' feedback seeking and recipience. Studies in Higher Education. doi: 10.1080/03075079.2015.1130032[Taylor & Francis Online]). In other words, just as Reeve and Tseng (2011 Reeve, J., & Tseng, M. (2011). Agency as a fourth aspect of student engagement during learning activities. Contemporary Educational Psychology, 36, 257–267. doi:10.1016/j.cedpsych.2011.05.002[CrossRef], [Web of Science ®]) defined “agentic engagement” as a “student's constructive contribution into the flow of the instruction they receive” (p. 258), likewise proactive recipience is a form of agentic engagement that involves the learner sharing responsibility for making feedback processes effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the suppression of spatiotemporal chaos in the complex GinzburgLandau equation by a combined global and local time-delay feedback. Feedback terms are implemented as a control scheme, i.e., they are proportional to the difference between the time-delayed state of the system and its current state. We perform a linear stability analysis of uniform oscillations with respect to space-dependent perturbations and compare with numerical simulations. Similarly, for the fixed-point solution that corresponds to amplitude death in the spatially extended system, a linear stability analysis with respect to space-dependent perturbations is performed and complemented by numerical simulations. © 2010 Elsevier B.V. All rights reserved.